RNA-targeted splice-correction therapy for neuromuscular disease.
نویسندگان
چکیده
Splice-modulation therapy, whereby molecular manipulation of premessenger RNA splicing is engineered to yield genetic correction, is a promising novel therapy for genetic diseases of muscle and nerve-the prototypical example being Duchenne muscular dystrophy. Duchenne muscular dystrophy is the most common childhood genetic disease, affecting one in 3500 newborn boys, causing progressive muscle weakness, heart and respiratory failure and premature death. No cure exists for this disease and a number of promising new molecular therapies are being intensively studied. Duchenne muscular dystrophy arises due to mutations that disrupt the open-reading-frame in the DMD gene leading to the absence of the essential muscle protein dystrophin. Of all novel molecular interventions currently being investigated for Duchenne muscular dystrophy, perhaps the most promising method aiming to restore dystrophin expression to diseased cells is known as 'exon skipping' or splice-modulation, whereby antisense oligonucleotides eliminate the deleterious effects of DMD mutations by modulating dystrophin pre-messenger RNA splicing, such that functional dystrophin protein is produced. Recently this method was shown to be promising and safe in clinical trials both in The Netherlands and the UK. These trials studied direct antisense oligonucleotide injections into single peripheral lower limb muscles, whereas a viable therapy will need antisense oligonucleotides to be delivered systemically to all muscles, most critically to the heart, and ultimately to all other affected tissues including brain. There has also been considerable progress in understanding how such splice-correction methods could be applied to the treatment of related neuromuscular diseases, including spinal muscular atrophy and myotonic dystrophy, where defects of splicing or alternative splicing are closely related to the disease mechanism.
منابع مشابه
mRNA transcript diversity creates new opportunities for pharmacological intervention.
Most protein coding genes generate multiple RNA transcripts through alternative splicing, variable 3' and 5'UTRs, and RNA editing. Although drug design typically targets the main transcript, alternative transcripts can have profound physiological effects, encoding proteins with distinct functions or regulatory properties. Formation of these alternative transcripts is tissue-selective and contex...
متن کاملAntisense Oligonucleotide Mediated Splice Correction of a Deep Intronic Mutation in OPA1
Inherited optic neuropathies (ION) present an important cause of blindness in the European working-age population. Recently we reported the discovery of four independent families with deep intronic mutations in the main inherited optic neuropathies gene OPA1. These deep intronic mutations cause mis-splicing of the OPA1 pre-messenger-RNA transcripts by creating cryptic acceptor splice sites. As ...
متن کاملRNA nanotechnology breakthrough for targeted release of RNA-based drugs using cell-based aptamers
Nucleic acids play different roles besides storing information and proteins coding. For example, single-stranded nucleic acids can fold into complicated structures with capability of molecular detection, catalyzing bioreactions and therapy. The development of RNA-based therapies has been rapidly progressed in the recent years. RNA aptamers are biomolecules with a size of 10 to 50 nm that can be...
متن کاملChimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in 48-50 DMD cells
*Institute Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University ‘‘La Sapienza,’’ P.le Aldo Moro 5, 00185 Rome, Italy; †Stem Cell Research Institute, Ospedale San Raffaele, 20132 Milan, Italy; §Department of Histology and Medical Embryology, University ‘‘La Sapienza,’’ 00161 Rome, Italy; and ‡Institute of Neurology, Catholic University and Centre for Neur...
متن کاملSplicing of the Survival Motor Neuron genes and implications for treatment of SMA
Proximal spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of the survival motor neuron (SMN) protein. The reduced SMN levels are due to loss of the survival motor neuron-1 (SMN1) gene. Humans carry a nearly identical SMN2 gene that generates a truncated protein, due to a C to T nucleotide alteration in exon 7 that leads to inefficient RNA splicing of exon 7. This ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 133 Pt 4 شماره
صفحات -
تاریخ انتشار 2010